ROUND I: GRAPHING ON THE NUMBER LINE

ANSWERS

3. $\left.\begin{array}{llllllllllll}-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}\right)$
4. $\begin{array}{lllllllllllll}-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

ON THE NUMBER LINES ABOVE DRAW THE GRAPHS OF THE SOLUTIONS OVER THE SET OF REAL NUMBERS FOR THE FOLLOWING OREN SENTENCES. USE THIS NOTATION FOR $3 \leq x<5$ or $x>6 \quad-\quad 3 \quad 4 \quad 5 \quad 6 \quad 7$.
(1 point) 1. $|2+x|<3$
(1 point) 2. $|2 x-5| \geq 3$
(2 points) 3. $\{x: 6 x+11<14 x+7$ and $3 x+7<8 x-3\}$
(2 points) 4. $|x-1|<|x+1|$

January 10, 1979 WOCOMAL FRESHMAN MEET
ROUND II: PERIMETER, AREA \& VOLUME ANSWERS
(1 point) 1. meters

ALL ANSWERS NUST BE SIMPLIFIED
(2 points) 2.
(3 points) 3. \qquad

1. How long is the diagonal of a rectangle whose area is 48 square meters and whose base is 8 meters?
2. A rectangular solid has a square face. The longest edge is twice the length of the side of the square. Find the number of cubic units in the volume of the solid if the volume and total surface area are numerically equal.
3. What is the number of square units in the total area (including the top and bottom) of the smallest cylindrical container that will contain three spheres of radius one inch? Use $\pi=\frac{22}{7}$.

ANSWERS

(1 point) 1 . \qquad

SIMPLIFY THE ANSWERS
(2 points) 2. degrees
(3 points) 3.

1. Thrice what number is twice that number?
2. If the equation $C=\frac{5}{9}(F-32)$ represents the relationship between the centigrade (C) and Fahrenheit (F) readings for any temperature, find the temperature at which the two will be equal.
3. In the following multiplication exercise numbers are replaced with letters. The letter 0 is not used. When you see 0 it is zero: What number does the product C7DD stand for?

A 0 B
C D
D A D
C 24
C 7 D D

(1 point) 1.
(2 points) 2.
(3 points) 3.

STMPLIFY THE FOLLOWING EXPRESSIONS. ALL ANSWERS MUST BE EXACT AND SIMPLIFIED AS FAR AS POSSIBLE.

1. $\frac{\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}}{-\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}}$
2. $\quad \frac{.04}{.06}+\frac{.3}{.09}-\frac{.8}{2.4} \times \frac{.35}{.7} \div \frac{.3}{3.6}$
3. $\frac{\frac{2+\frac{1}{2}}{3-\frac{1}{3}}}{\frac{4+\frac{1}{4}}{5-\frac{1}{5}}}$

UEnuary 10, 1979 WOCOMAL FGESMWAM MEET
TEAM ROUND: NUMBER THEORY - PRIMES, DIVESTBILITY: LCh, GCF, SEQUENCES OR SERTES

ALI ANSWERS MUST BE IN SIMPLEST FORM.
QUESTIONS 1 THROUGA 6 COUNT TWO POINTS EACH.

ANSWERS

1. \qquad divisible by both 4 and 9? a) 89462875312
b) 362877885
c) 984325698432
d) 54136928436
2. Find the greatest common factor of 429 and 715.
3. Give the next three terms in the sequence
4. \qquad $\{1,3,7,15, \ldots\}$.
5. Find four prime numbers which are factors of 6072.
6. Find the sum of the greatest common factor and the least common multiple of 1001 and 111.111.
S. Find two pairs of primes whose sum is 98.
7.
8. \qquad
9. \qquad

2.

\qquad
3. .
\square
\qquad

QUESTIONS 7 THROUGH 9 COUNT FOUR POINTS EACH.
7. Find the least common multiple of 231 and 4004.
7. \qquad
8. How many counting numbers from 1 to 100 ,
8. \qquad inclusive, are divisible by neither 2 nor 3 ?
9. Three numbers have a greatest common factor of 4 9. \qquad and a least common multiple of 240 . One is 16 and the second is 60. Find all possible values of the third number which are between 16 and 60 .

Auburn, Holy Name, Marlboro, St. John's, Shrewsbury, Southoridge, Ware, Worcester Academy

Jamary 10,1999 gocomat ERESHMAN MEET ANSHERS

ROUND I

(1 pt.) 1.
(1 pto) 2 .
(2 ptse) 3.

TEAM ROUND
ROUND II
(1) pts) is 10 meters
$(2$ ptes) 2. 250
(3 pts.) 3. 44

ROUND ITI

(1 pto) 10 0
(2 pte.) 2. - 20 degrees
(3 pts.) 3. 8755

TWO POTMIS EACH
$\begin{cases}10 & c \\ 20 & 143 \\ 3 . & 31.63 .527 \\ 40 & 203011.23 \\ 5 . & 1120112\end{cases}$
6. any two pairs of

19 and 79
31 and 67
37 and 61

早. 22012
8. 33
9. $20,24.40,48$

